Taming Sandcastle: A .NET Programmer's Guide to Documenting
Your Code

13 September 2010
by Michael Sorens

The most effective way to document .NET code so that others can
understand it and use it, is to use XML Documentation and SandCastle. It
isn't that easy. Michael Sorens produces the easy guide to the process that
Microsoft never managed, and introduces several applications that help.

Contents
L0To T o) (=T o1 (PPN 1
XML Documentation Comments: First LOOKcouiiiiiiiiiiiiieeecee et 3
DOC-COMMENT EI@MENTES ..ottt s et e st s b e e ssr e e smreesaneesnenesnnes 6
Automate Your Doc-CommeENt Cre@tion........occueeeiiiiieeiiieee e e e s meee e 7
Level 1: Word-level Assist: INtEllISENSEc...eeiiiiiiiecie e 7
Level 2: Foundation-laying Assist: Smart Comment Editingcccveveiiiiiiiiiiie e 7
The Problem of Documentation GENErationccceceeeierieerieneenee et 10
=Yg Lo ot 1y d [o =1 T o T 2 LU 1] o =Y USSR 11
Running Sandcastle Help File BUIIAEI.......coeeiiieiie et e e e sarane e e e e 12
Sandcastle Help File Builder Configuration: First LOOKcovcciiiiiiiiiiccciieee et 13
Rules for EMbedding HTIML......ocuuiiiiiiiiieeciiie ettt e st e e ste e s st e e s ave e e s s evee e essbaaeessnseeessnnsanessnnnes 16
SANACASEIE FOr NDOC USEIS ...eiiiiieiiieeiiee sttt ettt sttt et e st e s bt e e st e e sabe e sbeeeateesabeesabeesabeeesaneesares 17
SaNACastle CONSIAEIATIONScocviriiriiett ettt sttt st sttt b e r e s b sbeesaeesaneneee 21
BrOWSEE FIEXIDIITTY ..eeiieiiieeeiiiee et et e et e e e et e e e ebt e e e seabaeeesnteeeeeabeaeesenraneeennes 21
STOragE REQUINEIMENTS oottt bbb bebsbe b et et e eeeaeeeeeeeeeaeeees 21
Performance and INhErTaNCEcoo i e s 21
Issues DEPIOYING ON LINUX/UNIX c.vveiuiiiiiiiiiieciteeiteesteesteesteesteesteestaesaaesasessesateesseesseessesssassssesssssssessnes 22
Disambiguating and Resolving <See> REfErENCES......ccuviiiiiiiiiiiciiie et 23
Verbosity Of KSEE> EIBMENTSccuuivieiiie ittt e e e e e eeetarr e e e e e eeesaaraaeeeeeeeenasarasaeaeenns 25
Referencing Generic Types in <SEe> EIEMENTSciiiiiiiiiiiiiiii ettt e saaee e 25
Displaying SAMPIE COUEuiiiiiiiiiiiieeee e e e e e e et e e e e e e e sasteeeeeeeesaabtbaeeeeeesenssrnnneeeeean 26
Style Choices and Code DiSPlay ISSUESuuieeiiiieeiiiiiieee et e e scrrre e e e e s seerrere e e e e e ssnnbeaaeeeeeeenas 27

Using Favicons in Your Generated WeEDb Site........cciiiiieiiiiiiiii ettt e e e 29

http://www.simple-talk.com/author/michael-sorens/

Rendering Issue With UNresolved LINKSoioiiiii i 29

File Naming CONVENTIONSeiiiiiiiiiiieeee ettt et e e e e e et e e e e e e e snabe e e e e e e eesnntaaneeeeesannsnsenneessanan 30
Specifying Debug or Release Configuration..........cccciiiiieiiie e ittt eare e e eanes 31
FINAING WHat YOU IMISSEA ...eeeieeiiiiiieeee ettt sttt e e e ettt ee e e e e e e et re e e e e e e e s nabaaaeeeaesennnnsreneaaeeeas 33
DOCUMENTING NAMESPACES .eeeieiiiiiiiiiteeeee ittt et e e e ssribtte e e e e s ssbrteeeessssssbbaaaeeesssansssaaeeessssssseaaeeessnas 35
CONCIUSION ...ttt ettt ettt ettt e st e st e e ettt e bt e e sabeesabeeebee e abeesabeesabeesasaeesabeesas sanbeesnreenns 35

Imagine it: You've spent months developing your new .NET application. At some point,
you want to take an action within your application whenever files in a certain directory
are changed by another process external to your program. You think about coding this
“directory watcher” from scratch but, just as you are about to get started with the design,
you come across the System.|O.FileSystemWaicher class. The hyperlink | have
attached to that class name takes you to one entry point into the vast MSDN
documentation collection for the API of .NET itself. The FileSystemWatcher does just
what you need. Yet another building block from .NET now saves you substantial time,
money, and effort towards reaching your goal. But having the building block is only half
the story—the information on how to use it—the APIl—is the other half. If that
comprehensive MSDN documentation wasn’t there to provide usage details, then most
of you would find ways to cope: You might, for example, fire up .NET Reflector, examine
class and method signatures or do some experimentation. Essentially what you would
be doing—whether you write it down or not—is “documenting” the API for your own
needs. Now, if you multiply the time you spend doing so by hundreds or thousands of
other developers duplicate your effort, you’ll understand the scale of the wasted time.
Because Microsoft took the time and effort to create and publish the API for all of the
.NET libraries, this saves a huge amount of man-hours of work for you and other .NET
developers. You want to extend the same courtesy to your potential user community, or
fellow team-members.

The process to do this is quite poorly documented!

http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher.aspx

INSTRUMENT YOUR CODE

Oets the standsrd devistion of & list,

cparas name="11st">The llst.</pars
srStandard deviationd/ret

public starie daubles Gevirandardbeviasian(ids

Visual Studio

ENABLE DOC GENERATION

St

Culput pas | Beemug'

E] AL cooumen tation Fies |bin Dby g GardcameDemn. W4,

T Darirter S 0 bnbaree

CONFIGURE SANDCASTLE
“Project Propertics -

AR
CepCommentaFoup Frda=
Framewandéersion 15

e FlefFoma Wehsite
EeaplagHe

GENERATE DOCUMENTATIO

(ennc dir="§{csharpdoc}” executables"S{msbeild)"

GENERATE DOCUMENTATION
File I Docunentston | Window Help

Sandcastle Help File Builder

R Buid Froject CihShiftaB | ¢arg valus="/p:lonfigeration=Reloase” s
preben] : I T <arg valve="CleanCode, shfbpraj™/>
Pre. | ¢fenecy

DEPLOY DOCUMENTATION

[SH——
Chmas Bk rageties

Corfametralihy Femriiles m shaedaits el st e o

Siruciusres

N g
Figure 1 Integrating Sandcastle into your Build Process

The bulk of your work is documenting your code in Visual Studio. You then use
SHFB to configure your documentation set and build it either from the GUI or from
your build process to realize your finished documentation.

XML Documentation Comments: First Look

Documentation comments (or doc-comments) are comments in your code formatted
with special markup to allow machine recognition during the build to propagate the
information to two important consumers: the code editor’'s Intellisense and the API
generation that is the focus of this article.

Figure 2 illustrates how doc-comments support Intellisense for your custom classes.
Say, for example, you have started typing "clo" in either the "before" or "after" frame.
Intellisense pops up and indicates the first such item is ClockBackColor. Before doc-
comments were added to the source code, the tooltip for ClockBackColor does not
provide much additional information, just the base type Color. But after adding
comments to the library and recompiling, the tooltip in this code that uses the library now
shows a description.

public AlarmClockControl()
{

InitializeComponent () ; Before doc-comments
elof added

} 5 ClientRectangle e
=7 dientSize

P ¥ ClientSizeChanged sct sender, System.Eventlirgs e)

{ “f% Clipboard
iy ClockBackColor {Color ClockControl, ClockBackColor]]
“t% ClockControl
S ClockForeColor
= CloseReason

“5 CLSCompliantaktribute

s Color ¥ low. Date
i i B S | PP | e

— — — — I
pubilic AlarmClockControl (]
{

InitializeComponent (] : After doc-comments
ol added
} f‘ ClientRectangle P
50 ClientSize
I & dientSizechanged —ect sender, 3Iystem.Eventlrgs el
{ “§ Clipboard
gy ClockBackColor HColor ClockiContral, ClockBackCalor
“I% ClockControl Sets the backaround color of the clock. display.
ﬁ ClackForeColor
= CloseReason
“% CLSComplianitattribute
4 Color ¥ Mow. Date

ik e i 2 - AL i

Figure 2 How Doc-Comments Integrate into Intellisense
The top frame shows how Intellisense recognizes your library component but
nothing more. Once you have it documented, Intellisense can give the user more
information as shown in the bottom frame.

This added description came from adding special comments to the source code. Here's
the relevant code | typed in:

/// <summary>
/// Sets the background color of the clock display.

/// </summary>

public Color ClockBackColor

{

get { return clockBackColor; }

set { clockBackColor = value; clocklLabel.BackColor = clockBackColor; }

}

The contents of that <summary> element appear in the Intellisense tooltip—and only
the contents of the <summary> element—other elements you add for your external
documentation set will not appear in Intellisense. For the doc-comments to contribute
either to Intellisense or to external documentation, however, you must explicitly enable
XML documentation generation in your project properties—see Figure 3 (Note that you
are enabling the XML documentation generation for your library project, not for your
application that consumes the library.)

Application
Build™

Build Events
Debug
Resources
Services
Setlings
Reference Paths
Signing

Code Analysis

Configuration: |Release

b Platform; |Active (Any CPL) v|

General

Conditional compilation symbaols:
[] Define DEBUG constant
Define TRACE constant

Platform target:
[1 allow unsafe code
Optimize code

Errors and warnings
Warning level:
Suppress warnings:

Treat warnings as errors

{®) Mone
O Al

{:} Spedfic warnings:

Output

Qutput path:

Any CPU w

|I:|in frelease’, | Browse. .,

l XML documentation file:

!I:uin'-release'-,CIeanCudE.SqIEditDrCDnt'l:uls.XML |I

[] Register for COM interop

Generate serialization assembly;

| Auto v|

Figure 3 Enabling Documentation Generation in Visual Studio

Doc-Comment Elements

The example above showed just the <summary> doc-comment tag, which is the most
used tag because virtually every member (class, method, property, event) you create
must have one. The table below shows all the other tags you need to create effective
and complete documentation.

Tag Usage is... | Purpose
Main Sections
<summary> Required A short (usually one-line) description of the
member. This appears at the top of the member’s
web page as well as on its parent summary pages.
For example, the <summary> of a method appears
on its parent Methods page while the <summary> of
a class appears on its parent Namespace page.
Also used to populate an Intellisense tooltip for the
object when embedded in a larger project.
<remarks> Optional A detailed description of the member.
<example> As needed A substantial example in its own section; trivial
examples could be included in the <remarks>
section.
<seealso> As needed Adds a link to associated documentation.
Member Descriptions
<param> Required for Describes a parameter of a method. Also displayed
each in Intellisense.
parameter
<typeparam> Required for Describes a type parameter of a generic type or
each generic method.
type
parameter
<returns> Required for Describes the return value of a method.
each method
that returns a
value
<exception> Optional Describes an exception that could be thrown by a
method.
<value> Required Describes the value that a property represents.
<permission> Optional Documents the access level of a method.
Text Elements
<include> As needed Block-level element. Embed all or part of another
file into the current doc-comments.
<para> As needed Block-level element. Defines a paragraph.
<list> As needed Block-level element. Creates a list in one of several
different formats. (Note that the MSDN page lists
bullet, number, or table lists, but does not include
the definition list. See discussion here).
<code> As needed Block-level element. Specifies to format the content
as code.
<Cc> As needed Inline element. Specifies to format the content as
code.
<see> As needed Inline element. Defines a link to a page within the
same documentation set (cref attribute) or to an
external web page (href attribute).
<paramref> As needed Inline element. References a parameter of a
method.

http://msdn.microsoft.com/en-us/library/y3ww3c7e.aspx?ppud=4
http://shfb.codeplex.com/Thread/View.aspx?ThreadId=79045

<typeparamref> As needed Inline element. References a type parameter of a
generic type.

For more details, see MSDN’s Recommended Tags for Documentation Comments and
Dynicity’s excellent XML Documentation Comments Guide.

Documentation comments:

e Begin with a triple virgule rather than a double virgule (/) for single-line
comments or, for multi-line comments, include a double-asterisk after the
opening virgule (/** ... */). See Delimiters for Documentation Tags.

e Are written in a specific XML dialect.
e Are syntactically validated at compile time.

Automate Your Doc-Comment Creation

The objective of this article is to describe how to go about automating the process of
generating a finished documentation set. However | must mention, in passing, some
powerful techniques to assist the process of doc-comment writing without which the task
of writing all those doc-comments would be overwhelming.

There are several levels at which you can get assistance in the documentation process.
Level 1: Word-level Assist: Intellisense

The first tool is Intellisense, which recognizes basic doc-comment syntax. Once
you are inside a doc-comment type an opening left angle bracket (<). Visual
Studio displays XML tags valid for the context. Referring back to the previous
code example, place your cursor after the closing tag of the <summary>
element, press return, then type an opening angle bracket. Intellisense pops up
several possible keywords; typically <result> is the element to use here. Type
“r’, then press tab to fill in the word. Type “>” to close the tag and Visual Studio
adds the closing tag.

Level 2: Foundation-laying Assist: Smart Comment Editing

The next step up is also built-in to Visual Studio: smart comment editing. On the
line just above a method, property, or class declaration, type a triple virgule and
Visual Studio automatically supplies an empty <summary> element (where you
describe the member’s purpose in one line) followed by other relevant doc-
comment elements. (Note that if you have attributes on the given member you
must be positioned just above those rather than above the member name.) Say,
for example, you have a method that returns a value and takes several
parameters:

public int DeterminePageBufferSize(
int initialPageBufferSize,
string host,
int port,
int timeout,
bool smartTrace)

// code here .

http://msdn.microsoft.com/en-us/library/5ast78ax.aspx?ppud=4
http://www.dynicity.com/downloads/default.aspx
http://msdn.microsoft.com/en-us/library/5fz4y783.aspx

Place your cursor on the line above the first line of code shown, press three

required doc-comment elements:

virgules (///), and Visual Studio inserts boilerplate commentary for all the

X

/// <summary>
/17
/// </summary>
/// <param name="initialPageBufferSize"></param>
/// <param name="host"></param>
/// <param name="port"></param>
/// <param name="timeout"></param>
/// <param name="smartTrace"></param>
/// <returns></returns>
Note that you can control whether smart comment editing is enabled via the
Options dialog for C# (see Figure 4).
Options [l|
= Text Editor A | Outining
Gararal I Enter gutlining mode when files open

i File Extension Editor Help

[All Languages Underiine errors in the editor

b Basc Show bve semantic errors

EI e Gereral Highlight references to symbol under cursor

Tahs Refactoring
[] verify results of refactorng
Formatting & if there are compiler generated references

IntelliSenss XML Documentation Comments

- CiC++ — Generate XML documentation comments for /)

[+ €SS Imglement Interface

EI F= [1 surround generated cods with Zregion

[HTML Organize Usings

- J5orot Place "System' directives first when sorting usings

- PLASGL

[Plaen Taxt "

| ok][concel

Figure 4 Enabling Smart Comment Editing in Visual Studio

Level 3: Supercharged Assist: GhostDoc

Smart comment editing can save you substantial amounts of typing. But a third-
party plug-in called GhostDoc—available for Visual Studio 2005, 2008, and
2010—not only provides the boilerplate that smart comment editing does, it also

fills in the boilerplate!
Consider again the previous DeterminePageBufferSize method:

public int DeterminePageBufferSize(
int initialPageBufferSize,

http://submain.com/products/ghostdoc.aspx

string host,

int port,

int timeout,
bool smartTrace)

// code here .

Place your cursor on the first line of the method and press Control-Shift-D (or
other key combination you may have selected) to invoke GhostDoc and you get
this:

/// <summary>
/// Determines the size of the page buffer.
/// </summary>
/// <param name="initialPageBufferSize">Initial size of the page buffer.</para
m>
/// <param name="host">The host.</param>
/// <param name="port">The port.</param>
/// <param name="timeout">The timeout.</param>
/// <param name="smartTrace">if set to <c>true</c> [smart trace].</param>
/// <returns></returns>
public int DeterminePageBufferSize(
int initialPageBufferSize,
string host,
int port,
int timeout,
bool smartTrace)

// code here .

GhostDoc has not only enumerated each required element, it has filled them in.
Notice how it parses the Pascal-casing of the names to separate and re-arrange
words, deriving “Determines the size of the page buffer” from the
“DeterminePageBufferSize” name. ltems that it knows need polishing or
correction are marked in square brackets, as in the smartTrace parameter
comment above. It describes its Boolean nature but does not quite know what to
say it does. GhostDoc has a complex—and configurable—set of rules to do this
seeming magic. It does not always guess correctly, but it is does remarkably
well. The better names you use, the more success you will have with this
timesaving tool.

Overridden and subclassed members are handled particularly nicely by
GhostDoc as well. This next method exists inside a subclassed
System.Windows.Controls.UserControl. | generated the method with just a

couple keystrokes: “0”, “v”, space, “0”, “n”, “I”, tab. Then | generated the
complete doc-commentary with GhostDoc’s single keystroke command: Control-
Shift-D.

/// <summary>

/// Raises the <see cref="E:System.Windows.FrameworkElement.Initialized"/> eve
nt.

/// This method is invoked whenever

/// <see cref="P:System.Windows.FrameworkElement.IsInitialized"/> is

/// set to true internally.

/// </summary>

/// <param name="e">The <see cref="T:System.Windows.RoutedEventArgs"/>
/// that contains the event data.</param>

protected override void OnInitialized(EventArgs e)

{
}

base.OnInitialized(e);

Note that GhostDoc also installs a submenu under the Tools menu, so you can
invoke its function through the menu sequence Tools » GhostDoc » Document
This if you prefer.

The Problem of Documentation Generation

Once you have completed the considerable, but important, task of documenting your
entire code base, and then building your solution so that it compiles cleanly with Visual
Studio, you should now have an XML file for each project that you instrumented. Until
recently, that was the easy part. The more arduous task was to use these intermediate
fles to provide documentation. Several years ago, a third-party tool called NDoc
(authored by Kevin Downs) let you convert these intermediate XML files to a finished
documentation set. NDoc, however, was designed for .NET version 1 and was not
compatible with subsequent .NET releases! There was a port for .NET 2.0 (authored by
Jonas Lagerblad), but the hyperlinks for that have dried up completely at the time of
writing. Even so, NDoc did persevere until 2006, according to Wikipedia, just at the time
that Sandcastle succeeded it.

Sandcastle was developed by Microsoft and is, in fact, what they use to generate the
MSDN documentation. Sandcastle wasn't easy to use. According to Wikipedia,
“Sandcastle is a set of command line programs, configuration files, build components
and XSLT transformation files that work together to convert XML-based documentation
into help topics that are fit for viewing in a help system.” As that description suggests, it
is not a tool with a simple interface. Using Sandcastle was such a challenge that several
independent developers created wrapper applications. Here are the ones | know about.

Product Version Latest release Downloads
Sandcastle Help File Builder 1.9.1.0 July 2010 9,000*
DocProject 1.11.0 June 2008 29,000
Sandcastle GUI 1.54 March 2010 27
Sandcastle CHM ?? August 2006 ??

*This download count refers only to the current version. Counts for prior versions are not
included.

The first two are evidently packaged as industrial strength products, while the other two
are more informal. If you search the web you will see that both Eric Woodruff's
Sandcastle Help File Builder (SHFB) and David Sexton’s DocProject are well-respected.
| chose SHFB some time ago and have not been disappointed. It has a clean interface,
does the job well, and has great support. While | was converting a good size
documentation repository from NDoc to Sandcastle | encountered a number of issues
and was able to communicate easily and effectively with the author who either told me
what | was doing wrong, or promptly enhanced or fixed SHFB with the deficiencies |
identified. To help you decide which of these might work best for you, take a look at the
individual websites at the links above. Ideally | could point you to several articles that

http://ndoc.sourceforge.net/
http://en.wikipedia.org/wiki/NDoc
http://en.wikipedia.org/wiki/Sandcastle_%28software%2529
http://shfb.codeplex.com/
http://docproject.codeplex.com/
http://www.inchl.nl/SandcastleGUI/
http://www.codeproject.com/KB/install/SandcastleCreateBat.aspx

compare the two—I found only two of any substance, a blog entry by Ben Hall and this
post by SHFB'’s creator Eric Woodruff (it takes a very fair approach). If you elect to use
SHFB, then the remainder of this article should be of even greater interest!

Sandcastle Help File Builder

SHFB provides a GUI front end to Sandcastle in the guise of a file navigator in
combination with a large property pane. You use the file navigator to add projects to
your configuration and you use the property pane to adjust the numerous settings of
Sandcastle. Once you set those you do a build and SHFB directs Sandcastle to
generate your completed documentation set.

] CleanCode" - Sandcastle Help File Builder [|| S
Fie Documentation Window Help

DE @ I A P Reease * AnyCPU - |8 &% B - | F @

/prqm Properties | Build Output | - X || Project Explorer 2 x|

= 1 CleanCode

- iy | = =@ Documentation Sources

E Build - Wl CleanCode.csproj

& BuildLogFile ~lgl ChameleonRich TextBoxControk.cs
CleanIrtermediates True @l CsvProcessing.csproj
ComponertCorfigurations (More) DatabaseControls.csproj
CppCommentsFowup Faise] DataGridviewControls.csproj
FrameworkVersion 35 &l GeneralComponents.csproj
HelpFileFomat Website i@l RemoteCommands.csproj
KeeplLogFile True = el SqEdtorControls.csproj
PluginConfigurations (Mone) {=ll References
UserDefinedProperties (Mone) ij-] overview. htmi

B Comments
Namespace Summaries 0 with summary, 1 excluded
Project Summary

E Help Rle
Contert Placement AboveNamespaces
Copyright Href
Copyright Text
Feedback EMail Address msorens @users sourcefome.
Feedback EMailLink Text the developer
FooterText <div>Copyright (C) 2001-201
HeaderText
Help Title COeanCode C# Libraries v1.0
HimlHelpName: OeanCode CH Libraries API
indert Himi False
Language English (Uinited States)
Naming Method MemberMName
Preliminany False
PresentationShyle vs2005

Document inheritedFramework Members

If =&t to true, inhented framework members are documented. | set to

false they are not. NOTE: To work, DocumentinhedtedMembers must ..

Pmm ! I.e0

Figure 5 The Sandcastle Help File Builder GUI Window

http://blog.benhall.me.uk/2007/07/sandcastle-and-docproject.html
http://shfb.codeplex.com/Thread/View.aspx?ThreadId=58793
http://shfb.codeplex.com/Thread/View.aspx?ThreadId=58793

Even with this helpful wrapper, | still cannot call Sandcastle “easy” to use, but it is
easier! A case in point—installation. You actually need to install at a minimum these
three separate components, each from a different website:

e Sandcastle —the core components

e Sandcastle Styles — patches to presentation style files for bug fixes and
enhancements

e Sandcastle Help File Builder — the GUI

The Sandcastle Styles package is a collection of patches to the core Sandcastle’s
presentation component. If you don’t install it you may get either poor or even faulty
rendering of your output, possibly without realizing it. The SHFB Installation Instructions
certainly mention this, but you might miss that. You should read these instructions, along
with Sandcastle Style’s Getting Started, to guide you in your installation. Also, go to the
SHFB Documentation and view the FAQ page and the Known Issues and Limitations
page. This base installation of Sandcastle generates documentation as a web site, just
like MSDN. If you want a different form (chm, Hxs, or mshc help files) you must install
some additional components that Sandcastle will use to generate the documentation.

| mentioned, at the beginning, the irony that .NET documentation generation is itself
poorly documented. | am not the only one who noticed this. There is a user-posted
comment at the bottom of Sandcastle’s main documentation page musing over the fact
that most of the documentation links on the site point to empty content. That is why
Sandcastle Help File Builder exists, | suppose! SHFB is, by contrast, well documented.
Sandcastle Styles also is well documented. Its architecture page includes both a very
good architectural diagram of Sandcastle and its modes of operation. Other useful links
to remember include the MSDN Sandcastle page and the Sandcastle blog. Tim
Stanley’s interesting blog entry covers the history and future of NDoc and Sandcastle.

Running Sandcastle Help File Builder

Once you do all the preparation work, get Sandcastle installed, and finish reading this
article, then running SHFB is quite straightforward.

1. In the project explorer, open the context menu on Documentation Sources, then
add your project files (*.csproj)

2. Set SHFB properties to your preferences—these are the key ones that are
discussed elsewhere in this article:

a. Select the type of documentation set you wish to build (Project
Properties » Build category » HelpFileFormat): HtmIHelp1, MSHelp2,
MSHelpViewer, or Website. Except for the Website choice, you will
need to install additional external components that SHFB needs to
invoke.

b. Select the presentation style (Project Properties » Help File category
» PresentationStyle): vs2005 (the default), hana, or prototype. See
Style Choices and Code Display Issues.

c. Select the file naming method (Project Properties » Help File category
» NamingMethod): Guid (the default)) MemberName, or
HashedMemberName. The middle choice—MemberName—is
typically the most useful. See File Naming Conventions.

d. Select the configuration to match your Visual Studio build: debug (the
default) or release. See Specifying Debug or Release Configuration.

http://sandcastle.codeplex.com/
http://sandcastlestyles.codeplex.com/
http://shfb.codeplex.com/
http://www.ewoodruff.us/shfbdocs/Index.aspx?topic=html/8c0c97d0-c968-4c15-9fe9-e8f3a443c50a.htm
http://sandcastlestyles.codeplex.com/documentation
http://www.ewoodruff.us/shfbdocs/Index.aspx
http://msdn.microsoft.com/en-us/library/default.aspx
http://sandcastle.codeplex.com/wikipage?title=Introduction
http://sandcastlestyles.codeplex.com/wikipage?title=Architecture
http://msdn.microsoft.com/en-us/vstudio/bb608422.aspx
http://blogs.msdn.com/b/sandcastle/
http://tim-stanley.com/post/MSDN-Style-Class-Documentation.aspx

3. Build.

4. View your output. You could do this manually by just opening up the correct file
from Windows Explorer. For the website format, this is Index.html in your output
directory. But SHFB lets you do this easily from within the application. The
Documentation » View Help File menu provides several choices to open the
formats you have built. You can even set a property to auto-open upon a
successful build.

Also see the SHFB documentation page then drill down to Getting Started »
Walkthrough: Creating Your First Project.

As | was finishing this article my editor suggested one other product | might want to
mention. Help and Manual is a documentation management tool that lets you take Word,
help, text or Sandcastle files as input and generate PDF, e-Book, help (and other)
formats as output. As just mentioned, SHFB lets you natively generate four different
formats, but neither PDF nor e-Book is among them, so my interest was piqued. Help
and Manual looks promising: | was able to import a compiled Html help file (.chm)
generated by SHFB in a couple clicks then generate a PDF or e-Book from that with a
couple more clicks. These output formats retained the structure of the original
reasonably well. | do not (yet) support their claims on how easy it is to use Help and
Manual, though, since | ran into some issues importing from a couple different sources
(chm and HTML) and was not able to do import from my Sandcastle configuration. As it
is a sophisticated product, and | spent just a short time with it, | attribute this to the
learning curve needed to use the product effectively.

Sandcastle Help File Builder Configuration: First Look

It helps to have a concrete example in order to explain a documentation generator. | use
illustrations from my open source .NET library because you have immediate access to
the finished, generated documentation here (Figure 6 shows the top-level page).

http://www.ewoodruff.us/shfbdocs/
http://www.ec-software.com/index.html
http://cleancode.sourceforge.net/api/csharp/

(@ CiesnCode C# Libranes vi

P s Callapes All & Coda; AR
* ClaanCoxle: (C#:AR] ol ¥
ElNamespaces’ Mamespaces

= CleanCode. ChameleonRichTextSowTontrols Zand [radbecc
= CleanCode.CevProcessing Namespace
= ChaarCaode.Data Mamagpace -

ClaanCode.DatabasaCaontrols Namaspacs - Namespaces
¥ CleanCode. DatabasaControls Support Name
= CleanCode. CataGrdviewControis Namespag ~
= CleanCode.Diagnostics Namespace Hamespace Descriplion
¥ CleanCode.Forms Rarmaspaos CleenCods. Lhamel=enRshTexdBoxtantrgls & custom user control thot adds Festures to &
ClaanCode.GeneralComponents. Cantrals M UERTRMUSIVE T A b"i'"d" woon the Aevised
% ClaanCode.GenermlCompenents. Dialoge N EentaisghlightsngTextBgx from & devalcpar
i ncran g5 kabwla who busk hes improwements E
CleanCode.General Components Suppart N wpon the SyntgatahlightingTetBor wark of “uri
= CleanCode.]0 Namespace guy”, and the SearchableRichTessSox craated by
CleanCode.Math Namespace Jem Blackiar,
= CleanCode.Net Mamespace
: slepnseds. SR rRcaEEIng Halgar classes for comma-separated valua {CEV)
* ClaanCade. RemcteCammandes Mamespace [fleg.
u “!ﬁﬂﬂgi-ﬁqﬁﬂﬁﬂﬂﬂ"ﬂ'l hiast | Support for dats operatsans, coverng usaful
: . SleanCooe. Daty \
¥ CleanCode. Threading Namespace itk
St ooerabons a5 well as debuggeng and
& ClaanTode. Xmd Mesmespace Carsistancs.
CleafiCods DatabsseConliols Cuslom usar costrgls for dalabaie sccess,
cleencose DetabaseCeniicls Sugner] Supper mathods specifically used by tha custom
waer control bbrery.
CleanCode Deta G ridyiewContrgls A custom user control that adds festures to a

DataGrdiew. Thes contral builds vpan the
wacedant bage developed by Chrs MoGrath and
descussed in his actde Extendng the Datadcd vies.
| 1 hava nated in the code the addd=nal
ankancemaents | kave mada rvadlsbia throwgh

OeanCode.
I ([fylatelsl B nosti Daagnostic support (levaraging
System. Diagnosbos).
ClagnCode Formg Support for Windows Egame.
CleanCods GeneralComponests Contrpdy Custom user controls. Thes propect containg an il
; - B _sEonman of cuRom conirols B provide >

Figure 6 Top-Level Docum;ntation Page Generated by Sandcastle

Download the CleanCode C# library and you have the fully instrumented source files to
examine the doc-comments for anything you want to review in detail. Furthermore, you
can examine my build file (I use ant) in several visualizations. The raw XML file is here
with an XSL-stylized mask on it (just do View Source in your browser to see the raw
XML if you prefer). A more API-style view of it is available here. The build file is (overly)
complex; the documentation generation is controlled by the csharp.doc target in the ant
file. That runs through an assortment of bookkeeping details but eventually gets to this
step that does the actual Sandcastle processing:

<target name="csharp.doc.main"
depends="csharp.doc.checkIfRequired”
unless="csharpdocBuild.notRequired">
<property name="csharpdoc.log" value="${csharpdoc}/msbuild.log" />
<delete dir="¢${mirror.api}/csharp"/>
<exec dir="${csharpdoc}" executable="${msbuild}" output="${csharpdoc.log}">
<arg value="/p:Configuration=Release"/>
<arg value="CleanCode.shfbproj"/>
</exec>
</target>

Or, if you do not “speak” ant, here is the essence from the command line:

\WINDOWS\Microsoft.NET\Framework\v3.5\MSBuild.exe
/p:Configuration=Release
CleanCode.shfbproj

You'll have noticed that the build step is nothing more than calling the standard .NET
msbuild utility with the SHFB configuration file. It is not as complicated as you might
think. Here is the raw file for my libraries—the only thing | have omitted is the content of

http://cleancode.sourceforge.net/wwwdoc/download.html
http://cleancode.sourceforge.net/arch/ant/build.xml
http://cleancode.sourceforge.net/arch/ant/antdoc/index.html

the FooterText element because that is quite convoluted (not because of SHFB, but
rather because of all the stuff | want to put in the footer of my HTML pages):

<Project DefaultTargets="Build"
xmlns=http://schemas.microsoft.com/developer/msbuild/2003
ToolsVersion="3.5">

<PropertyGroup> <Configuration
Condition=" '$(Configuration)' == "' ">Debug</Configuration>
<Platform Condition=" '$(Platform)’' == '' ">AnyCPU</Platform>

<SchemaVersion>2.0</SchemaVersion>
<ProjectGuid>{3fc75268-b8f2-4dd5-85a1-0706307c060}</ProjectGuid>
<SHFBSchemaVersion>1.8.0.3</SHFBSchemaVersion>
<!-- AssemblyName, Name, and RootNamespace are not used by SHFB
but Visual Studio adds them anyway -->
<AssemblyName>Documentation</AssemblyName>
<RootNamespace>Documentation</RootNamespace>
<Name>Documentation</Name>
<l-- SHFB properties -->
<OutputPath>C:\usr\tmp\CleanCode doc\</OutputPath>
<HtmlHelpName>CleanCode C# Libraries API</HtmlHelpName>
<HelpTitle>CleanCode C# Libraries v1.0.0 API</HelpTitle>
<HelpFileFormat>Website</HelpFileFormat>
<RootNamespaceContainer>True</RootNamespaceContainer>
<MissingTags>Summary, Parameter, Returns, Value,
AutoDocumentCtors, Namespace, TypeParameter</MissingTags>

<DocumentationSources>

<DocumentationSource sourceFile=

"..\CleanCode\CleanCode.csproj" />
<DocumentationSource sourceFile=

"..\ChameleonRichTextBoxControls\ChameleonRichTextBoxControls.csproj" />
<DocumentationSource sourceFile=
"..\CsvProcessing\CsvProcessing.csproj" />
<DocumentationSource sourceFile=
"..\DatabaseControls\DatabaseControls.csproj" />
<DocumentationSource sourceFile=
"..\DataGridViewControls\DataGridViewControls.csproj" />
<DocumentationSource sourceFile=
"..\GeneralComponents\GeneralComponents.csproj" />
<DocumentationSource sourceFile=
"..\RemoteCommands\RemoteCommands.csproj" />
<DocumentationSource sourceFile=
"..\SgqlEditorControls\SqlEditorControls.csproj" />
</DocumentationSources>
<NamespaceSummaries>
<NamespaceSummaryItem name="(global)" isDocumented="False" xmlns="" />
</NamespaceSummaries>
<FooterText>. . .</FooterText>
<NamingMethod>MemberName</NamingMethod>
<FeedbackEMaillLinkText>the developer</FeedbackEMaillLinkText>

<VisibleItems>
InheritedMembers, Protected, SealedProtected </VisibleItems>
</PropertyGroup> <PropertyGroup Condition=
" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
</PropertyGroup>

<PropertyGroup Condition=

http://schemas.microsoft.com/developer/msbuild/2003

" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' ">
</PropertyGroup>
<ItemGroup>
<Content Include="overview.html" />
</ItemGroup>
<!-- Import the SHFB build targets -->
<Import Project="$(SHFBROOT)\SandcastleHelpFileBuilder.targets" />
</Project>

Rules for Embedding HTML

Generally, you can edit the SFHB configuration directly if you want to, but it is both
simpler and safer to do it inside the GUI of SHFB. In particular, the elements—like
FooterText—that contain embedded HTML must be edited with the GUI to get proper
character encodings. My SHFB discussion thread documents how | became aware of
this, but | can quickly drive the point home:

This is what | wanted for my footer text—a combination of literal HTML elements and an
admittedly jarring jumble of self-writing code:

<div>
Copyright (C) 2001-2010 Michael Sorens -- Revised 2010.05.31

<img src='http://sflogo.sourceforge.net/sflogo.php?group_id=101363&typ

e=9'
width="'80"' height='15"' border='0"
alt="Get CleanCode at SourceForge.net.
Fast, secure and Free Open Source software downloads'/>

</div>

<script type='text/javascript' src='/js/MenuArchive.js'></script>

<script type='text/javascript'>setTrack();</script>

<script type='text/javascript'src="http://tcr.tynt.com/javascripts/Tracer.js?u
ser=djcAab7jrHtB;s=71"'></script>

<script type="text/javascript">

var galsHost = (("https:" == document.location.protocol) ?
"https://ssl." : "http://www.");
document.write(unescape("%253Cscript src=""
+ gaJsHost
+ "google-
analytics.com/ga.js' type="text/javascript'%253E%253C/script%253E"));
</script>

<script type="text/javascript">
try {{ var pageTracker =
_gat._getTracker("UA-10---0-1");
pageTracker._trackPageview();

}} catch(err) {{}}

</script>

Inside the GUI, | could just paste in this messy—but still readable—code fragment.
SHFB rewrites it into the configuration file encoded in this virtually unreadable text:

<FooterText>&1lt%3bdiv&gt%3bCopyright %28C%29 2001-
2010 Michael Sorens -- Revised 2010.05.31

http://shfb.codeplex.com/Thread/View.aspx?ThreadId=79520
http://sflogo.sourceforge.net/sflogo.php?group_id=101363&type=9
http://sflogo.sourceforge.net/sflogo.php?group_id=101363&type=9
http://sflogo.sourceforge.net/sflogo.php?group_id=101363&type=9

&lt%3ba href=%27http://sourceforge.net/projects/cleancode%27&gt%3b&
;1t%3bimg src=%27http://sflogo.sourceforge.net/sflogo.php%3fgroup_id=101363&am
p;amp%3bamp%3btype=9%27 width=%2780%27 height=%2715%27 border=%270%27

alt=%27Get CleanCode at SourceForge.net. Fast, secure and Free Open Source

software downloads%27/&gt%3b&1lt%3b/a&gt%3b&lt%3b/div&gt%3

b
&1t%3bscript type=%27text/javascript%27 src=%27/js/MenulArchive.js%27&g
t%3b& 1t%3b/script&gt%3b
&lt%3bscript type=%27text/javascript%27&gt%3bsetTrack’%28%29%3b&lt%
3b/script&gt%3b
&1t%3bscript type=%27text/javascript%27 src=%27http://tcr.tynt.com/javascr
ipts/Tracer.js%3fuser=djcAab7jrHtB%3bs=71%27& gt%3b&1t%3b/script&gt
%3b
&lt%3bscript type=&quot%3btext/javascript&quot%3b&gt%3b

var galsHost = %28%28&quot%3bhttps:&quot%3b == document.location.p
rotocol%29 %3f &quot%3bhttps://ssl.&quot%3b : &quot%3bhttp://www.&
amp ; quot%3b%29%3b

document.write%28unescape%28&quot%3b%25253Cscript src=%27&quot%3b
+ galsHost + &quot%3bgoogle-
analytics.com/ga.js%27 type=%27text/javascript%27%25253E%25253C/script%25253E&
amp ; quot%3b%29%29%3b
&1t%3b/script&gt%3b
&lt%3bscript type=&quot%3btext/javascript&quot%3b&gt%3b

try {{ var pageTracker = _gat._ getTracker%28&quot%3bUA-10---0-
1& quot%3b%29%3b pageTracker._trackPageview%28%29%3b }} catch%28err%29 {{}}
&1t%3b/script&gt%3b</FooterText>

There are just a couple important rules you need to be aware of when pasting code
through the GUI.

o If you need curly braces, double them. That is, use {{ for { and }} for }.
o If you need a percent character, URL-encode it. That is, use %25 for %.

Peruse the first code fragment above—the readable one—and you will see where | have
applied both of these rules. There are several instances, for example, of %253C and
%253E, which become %3C and %3E when rendered. (These are angle bracket
characters < and >.) And in the final <script> element there are two sets of doubled
braces in the JavaScript.

Sandcastle for NDoc Users

| started with NDoc some years back; almost a year ago | decided to modernize and
convert to Sandcastle. Thinking that others might find some notes on this conversion
useful, I am including my notes here along with a few comparison screen shots. In each
screen shot in this section, Sandcastle output is on the left, NDoc on the right. The first
one shows a namespace page, itemizing classes, structures, and interfaces that the
namespace contains. In this comparison, and those that follow, | think you will agree that
Sandcastle provides a better look and feel. Also observe that they both contain
essentially the same information, though not in the same order.

Eleancﬁd'a.-ﬁ-unéruléﬁmpunarﬂs.SuPpmt Mamespace
Sand Fogulback

Support methods speafcally used by the custom user contral Barary.

= Classes

- Structures

¢e¢e

- Imterfaces

Class

ContsnerTestinfa

Struiturs

TH Tk

Interface
"“‘:t]E:!u'! i

ClennCode £ Libraries w230 AP]
CleanCoda. GeneralCompanents. Support Namespace

Suppart methods specfically used by tha custom user cantral Morary

Classes
Clans
nﬂi[fll.llhll K .‘.-'!tl'li"rTgs'. nle
Frovides a standardized method for displ
ContesnarTest proparty,
Interaces
Interface
Description I e

IDsgplavE|ement
Cpecfias to display & catagory heading i

Specfies to Jisplay & user command wett

Spaciss 1o display & deparator kne Siructires

Structiure
CategoryElsmignt
Description Comeardflsmripd

This smiply sberfads o the base slemant

CatagoryElement, CommandElament, an : i
Catagary Sepamatorblamen

Figure 7 Sandcastle vs. NDoc Namespace Pages

emespace hieranchy

I Cescriplion

Provedas & Eandardizad malhsd for dip
added disgnostc functionaliny when enal
praperty.

_ Dascription

This empty interface is the base semen
to define & collacton cantaiming Cetegar
CommantElement, and Sapsratortlams

__Ducrirl.l-n

Specifies to disglay a category heading i
an inverse color scheme.

5:|m;|l'-“ 1o depptay & Uder comemarsd wit
Wiy, TOREIp, andar Button

Epacifies to desplay a separetor bne.

On other pages, Sandcastle provides considerably more useful material than NDoc.
Here is a page documenting a single method. It is necessarily small and challenging to
read due to the confines of the medium you are reading, but if you squint you might
make out these additional elements from Sandcastle (from top to bottom in Figure 8):

Collapse all button
Code all button
the namespace

the assembly
method signature in C#, VB, and C++ (compared to just C# in NDoc)
parameter type

The Collapse all button lets you take advantage of the outline structure of the page,
collapsing all main sections of the page (in this case the Syntax, Remarks, and See Also
sections). The Code all button, on the other hand, is a drop-down where you may select
any of the 3 default languages or the default, all. (See Style Choices and Code Display
Issues for more on this.)

= Cellapse All ¢ Cods=: All

H . CleanCode C# Libraries +0.5.30 AR
ChamelecnRichTaxtBox. ShiftLeft Method ChameleonRichTextBox.ShiftLeft Method

ChamesleanRichTextBay Class See Slso Send Feedback

Shafts the selection to the left by removing whitespace from the
beginning of each line in the current selaction.

Shifis the selaction o tha left by removing whitespace from the

beginning of sach hne i the current selection public yoid ShLftlefilq
Namespace: ClearCode ChamelssedichTasrSaxCantols Remarks
Assembly: Clearlode.ChamelecnfichTextBoxCantrols (in .
ClaanCods ChamelsenfichTextSaxCantrols dil) varsion: 1.0.0.0 Thiz mathod will remave gither 2 tab or the squivalent number
(1.0.0.00 " of spaces (as speofied by the TabSize property). Note that the
B sesting of the ExpacdTab property is not used--whabaver is
- Syntax found (spaces or tabs) will be excsed,
cr

peblic woid skiftieftl)

Visual Basic (Declaration)

ablic Sub ShiftLedt E:E.-‘nar.r Ec‘- 20012009 Michael Sorens - Revised 2009.10.31

=i2 SniffLeft

- Remarks
This method will remove either a tab or the sguwvalent number of
spaces (a6 speched by the TabSGe property). Nobe that the seting
of the ExpandTab property is not used--whatever i found (spaces or
tabd) will be exoped,

- See Also
CramelesnuchTexiSay Claes
CleanCode. ChamsleonRichTextBexControls Nemespace

Capyrizht (C] 20012020 Michasd Sarng «- Revized 2010.05,31

Sangd comments on thiz topic to the Se-aloper

Figure 8 Sandcastle vs. NDoc Method Pages

Here is another example showing the benefit of collapsible sections. On this members
page, the 'constructors', 'methods’, fields, properties, events, and 'See Also' are all
collapsible sections in Sandcastle. NDoc, on the other hand, separates elements in
sections but there is no way to filter the list to focus on just one section. Note that at the
very top, the Sandcastle page on the left has not just a Code all button but also a
Members show all button, giving you additional flexibility to display or suppress
protected members and inherited members. (And this dropdown suffers the same fate
as the Code all button—it does not display in Firefox.) One other useful feature from
Sandcastle is the set of jump links near the top (highlighted in red) for. If you do not
have any sections collapsed, some classes could have a lengthy page full of methods,
properties, etc. These jump links let you jump directly to any of the main sections on the
page without having to do a lot of scrolling.

F Memibers: Show Al

¥ Coade: All

— Cofagse All

Fipmaleonfich Tevifow Clags Comngingriory Methody Fegldy Properies Ceenig

CleanCoge C# Libranes w0, 9,30 457
ChameleonRichTextBox Members

ChamalaonRIChTes BN Ovenview

The ChamslsonBichTewiBox type exposes the fallowsng mesmbars,
Constructors i1.
Hamee Descnpt
w Cmmrmal Initealires
i Methods I
Fields
Hame [eescmipts
originalSrlactionStart [irharited
+ Properties i
+ Events {
|- See Alsol
Sramsieanfichlesntay Clagd
ChearCody ChamalssnlichTextBasCantrals Mamaipass
e T,) o R, S e ey Iy e, s

o Eigure 9 Sandcastle vs. NDoc Members Pag

Pubdic Instance Constructors

& Chamglecn®schTaxtion Congtrg bor

Public Instance Properties

e AccepbsTab (mherited from TextBoxBase

PR AccessbilityDbjsct (mhentsd from Controd

e AccansbleDataultac bonDescriphicon (nhented from Control

e AccessblsDasonphion [inhented from Contrel
B accessblebiams {inherited from Contrel
e AccaanblaRols

.. a0 Dpop nbented rom Rehl eohBomie , . s _ sis
es

whdaritad from Coantroel)

\,«.,_ R I T el T T

On this page note that both Sandcastle and NDoc include icons next to each element to
provide a visual cue as to its type. These are somewhat universal icons in the .NET

world—you find them not just in MSDN doc

umentation but Visual Studio uses them in

the Object Browser, the member dropdown at the top of the editor window, and probably

other places as well.

In the screen shots above, the meaning of each icon is evident because all the elements

are grouped and labeled. But in other uses

(e.g. Visual Studio) you have only the icon

and it is not always obvious what they mean. Furthermore, in my experience, | have
never seen a legend for these, so | include one here. | have highlighted the Protected
Internal column to call attention to a difference between NDoc and Sandcastle.
Protected Internal elements are documented in NDoc but | have not been able to find
any combination of properties that enables you to document them in Sandcastle.

Xy
-, m Q‘ -
Element "“:s'-.‘:', %‘"‘ &' -i‘;s.?
Type @ Q."\"‘ p ("’?
S & F |
Methods = 5% i 5% = Y5
Properties & B) i<y S
Events F o af oF
Fields @ o o o 93

There is one feature | found appealing in NDoc that is absent in Sandcastle—the list of
classes that implement an interface. In a sense this violates design principle since a

class should not know or care about its co
exception when the classes are defined in

nsumers, but | like the idea of making an
the same library as the interface as is the

case here. | inquired about this on the SHFB forum here; Eric indicated that Sandcastle
does not do this by default but that it could be added as a transformation. Translation: it

is left as an exercise for the reader!

http://shfb.codeplex.com/Thread/View.aspx?ThreadId=81989

CleanCods C#£ Libraries v0,9.30 AP
IDisplayElement Interface

Thiz empty interface is the base element that should be used to define a collection
containing CategoryElement, CommandElement, and SeparatorElement objects.

pubklic interface IDisplayElement
Types that implement IDisplayElement

Type Description

CategorvElement Specifies to display a category heading in
a larger, bold font in an inverse color
zcheme.

CommandElement Specifies to display a user command with
an optional shortcut key, tooltip, and/or
buttan.

SeparatorElement Specifies to display a separator line.

Figure 10 Documenting Implemented Interfaces
Sandcastle documents known implementations of an interface. It technically
violates design principles but it is convenient!

Sandcastle Considerations
Browser Flexibility

An NDoc-generated website runs only in Internet Explorer. Sandcastle-
generated content can also run in other browsers. | currently use Firefox and IE
and both work with Sandcastle content, with the exception of the one small
Firefox glitch noted above.

Storage Requirements

For my libraries, NDoc content filled about 11MB with 1100 files; Sandcastle
content fills 34MB with 1700 files.

Performance and Inheritance

When | used NDoc it required about 2 to 3 minutes to run; Sandcastle takes 5 to
20 minutes depending on your configuration file and your network speed.
Sandcastle weaves a tight and thorough web of links into your content but it has
to access internet resources to do this. In my experience the
DocumentinheritedFrameworkMembers property makes the most impact on
performance. On my home computer, enabling this property increased the
runtime from about 5 minutes to more than 15 minutes. So while | was working
through documentation issues | turned it off to decrease turnaround time, then
turned it back on when | was finished tweaking.

Figure 11 illustrates how this property actually manifests in the finished content.
Here | show just the navigation panels from the documentation set, generated
three different ways. The leftmost includes inherited framework members. The
middle panel excludes those, but still includes inherited local members, i.e.
inheritance of my own classes, controlled with the DocumentinheritedMembers
property. The rightmost disables both the DocumentinheritedFrameworkMembers

property and DocumentinheritedMembers properties. It also happens to be what
you get from NDoc so the rightmost panel is actually an NDoc screenshot.

| ChameleonRichTextScx Class| |ChamelegrRichTextSox Class) Eﬁe.?glenz_r'ﬁ.u:_hﬁ;igx_fla

. C:ame:aan{gT&ﬂanx Members s ChameleanRichTex:Box Members » ChamsleonRichTextBox Members
= ChameleonfichTextBox Constructor = ChameleonRichTextBox Constructor 2 - i ;
= ChameleonfichTextSox Fields » ChamelzonRichTexiBox Fields e {j‘.am:f.eunﬂjch'femcx e
= ChameleonRichTextBox Methods £ ChameleonRichTexiBox Methods HEopEthed

» AccessibilityNotifyClients Method s AddHighlightDescriptor Methed = Methads

» AddHighlghtDescnpior Method » CommentSelechon Methed *» CommentSelection Methed

= Baginlnvoks Me_ﬁ'lad » DefineContext Method » DefireContess Method

= CommentSelection Method * DelateRangeaByFullLines Method s DeletsRangeSyFullLines Mathod

= DefineContext Method * Dispose Method .

= DeleteRangeByFulllines Method » MakeComment Method (9" Dispose Nethod

H Dispoze Method » OnFontChanged Method » MzkeComment Msthod

Find Method » On¥eyDown Method * OnFontChanged Method

L Gettl_l';Idﬁt?ua? ge:hud * OnSizeChanged Methad » OnkeyDown Method

= Invalidate Metho v Rezstfezpurces Method o §

= Imvoks Method » SorollToEnd Method PAErChaes R

= LoadFile Method o ShiftLeft Method e Ll

» MakeComment Method s Shiftight Method v ShiftLeft Mathod

= MemberwizeClone Method v ShowlzerCommands Method » ShiftRight Method

= OnFontChanged :!E;.hal:l » UncommentSelection Method » Showllzsr-Commands Method

= OnkeyDown Metho F ChamelegnRichTextBox Froperbes . :

® OnSizeChangad Method ¥ ChamelzonRichTextBox EVEEI'I?-S FSORK e Mo iou

= Paste Msthod # Events

= Parformlayout Method

® HezstRezources Method

® Rasumelayout Mathod

» RilTranslatzalignment Mathod

= Savefils Method

= Scale Method

% ScrolTeEnd Methed

® Select Method

= SefBounds Method

= ShiftLeft Method

= ShiftRight Methed

» ShowlUserCommands Method

= UncommentSelection Method

» |JpdateSounds Method

o
=

ChameleonfichTextBox Froperties
® ChameleonRichTextSox Events
Figure 11 Effect of Setting Different Inheritance Levels
The leftmost panel includes inherited framework members and inherited local
members; the middle excludes inherited framework members; the rightmost
excludes all inherited members.

Issues Deploying on Linux/Unix

Internet Information Server (IIS) is case-insensitive but Linux/Unix systems are not. |
needed to deploy to a Linux system running Apache (SourceForge) so ran into a couple
issues—see my post here.

Sandcastle generates the master documentation page for a web site as Index.html--
with a capital "I". Apache looks for a default web page from a standard list: index.html,
index.htm, default.html, etc. But this list is case-sensitive so Index.html will not be a
match. The workaround is either to rename the generated Index.html to index.html or

http://shfb.codeplex.com/Thread/View.aspx?ThreadId=82197

to add a .htaccess file to the same directory containing the Index.html file with just one
line of text to direct Apache to use the file as it was created by Sandcastle:

DirectoryIndex Index.html

Another problem that was due to case-sensitivity issues involves the copy button on
code samples that you embed in your documentation. The copy button includes an
attached icon that changes when you mouse over it, but the “inactive” icon appears as
broken link. This requires a two-part workaround:rename .http://www.simple-
talk.com/icons/CopyCode_h.gif to copycode h.gif and replace all occurrences of
CopyCode.qif with copycode.qif.

Here are the relevant commands from my ant build file that | use to correct these (the
intent should be clear even if you are unfamiliar with ant):

<echo>Applying patch for Sandcastle to find correct index file.</echo>

<copy preservelastmodified="true"
file="${csharpdoc}/.htaccess" todir="${mirror.api}/csharp" />

<echo>Applying patch for Sandcastle due to case sensitivity.</echo>
<replaceregexp flags="g" match="CopyCode.gif" replace="copycode.gif">

<fileset dir="${mirror.api}/csharp/html" includes="*.htm" />
</replaceregexp>

<move
file="${mirror.api}/csharp/icons/CopyCode_h.gif"
tofile="${mirror.api}/csharp/icons/copycode_h.gif" />

Disambiguating and Resolving <see> References

The <see> markup element is equivalent to the HTML <a> element, letting you specify a
link to another page, either internal to your documentation set with the cref attribute or
external with the href attribute. For external links, you supply a URL value to the href
attribute. For internal links, you provide a local reference to the cref attribute by
specifying a member name. Members are types, properties, fields, events, or methods.
It is good practice to use <see> elements whenever you mention any of your own
elements as you write your documentation comments. Assume, for example, you have a
method GetPhrase() in your current class and in the <remarks> for the class you have a
sentence such as:

Use GetPhrase to have the SuperWidget process your inputs.

You should actually type that in with the GetPhrase mention embedded in a <see>
element:

Use <see cref= "GetPhrase'/> to have the SuperWidget process your inputs.
If the method is not overloaded, the simple name is all you need. If it is overloaded, you
must uniquely identify which signature you intend to link to by supplying arguments. If

you want to refer to a variant with no arguments use an empty parameter list:

Use <see cref="GetPhrase()"/> to have the SuperWidget process your inputs.

If instead this sentence is in a different class you need to qualify the name. For good
measure you should also add a reference to the SuperWidget class, too:

Use <see cref="SuperWidget.GetPhrase'"/> to have the <see
cref="SuperWidget'/> process your inputs.

Note that Visual Studio understands the markup language for your doc-comments, so
Intellisense is available to guide you with entering your element names and attribute
names. This does not apply to attribute values even though, for the <see> element, the
values should always be members of your classes. However, Visual Studio does
validate the attribute values (the member references) at compile time. Thus, by the time
you fire up SHFB you can be completely confident that your references will work. Except
that is not quite true—I found a couple scenarios where Visual Studio compiles cleanly
but Sandcastle fails to identify link targets (here’s my original SHFB forum thread). A
<see> element may also be written by specifying the member type as a prefix. Here |
indicate a method (M) and a type (T):

Use <see cref="M:SuperWidget.GetPhrase"/> to have the <see
cref="T:SuperWidget"/> process your inputs.

But this will not work! Sandcastle renders it as:

Use [M:SuperWidget.GetPhrase()] to have the [T:SuperWidget] process
your inputs.

MSDN lists the valid member type characters under Processing the XML File. In the fine
print on that page, it indicates that this notation requires fully qualified paths. Visual
Studio is able to resolve the path from your context; you would think that when it
recognizes this situation while building the intermediate XML documentation files it could
add whatever else is needed. (Then again, | am not quite sure why Sandcastle does
resolve the links without the member prefix, so it is not a simple issue.) So the
workaround to allow Sandcastle to resolve the links is:

Use [M:SandcastleDemo.SuperWidget.GetPhrase] to have the
[T:SandcastleDemo.SuperWidget] process your inputs.

| found one more problem with using member type prefixes: when referencing methods
you cannot supply an argument list. If the target method takes no arguments, or the
method has no overloads, that simply means using <see cref="M:SuperWidget.GetPhrase"/>
instead of <see cref="M:SuperWidget.GetPhrase()"/>. But if your target method has overloads
(with different method signatures) you must specify the argument signature to
disambiguate your reference. Since this article is not discussing quantum computing you
cannot do both at the same time :-). Your only recourse is to remove the member type
prefix; then you can specify argument signatures.

So with all these pernickety behaviors, why do | even mention these member-type
prefixes? When GhostDoc—that helpful utility that automatically writes out a good
portion of your doc-comments—creates fully specified references, they include both a
member type prefix and a fully qualified path. See the example in Automate Your Doc-
Comment Creation. The GhostDoc-created content, being fully qualified, should work
just fine. But it will pepper your files with these member type prefixes. And some day you
may copy one of these generated doc-comments for a new method, forgetting that you
have to use a fully qualified path or that you cannot use an argument signature, thereby
inadvertently introducing a lost reference.

http://shfb.codeplex.com/Thread/View.aspx?ThreadId=79038
http://msdn.microsoft.com/en-us/library/fsbx0t7x.aspx

Verbosity of <see> Elements

When you have a single, non-overloaded method and reference it with, for example

<see cref="DefineContext"/>

Sandcastle renders this with its full signature, as in:

DefineContext(string,int)

while NDoc renders it as the more palatable <a>DefineContext. By providing
additional information, you can direct Sandcastle to have the hyperlink text be just the
name (without the argument signature). The above <see> element did not include any
content. Just add content to the element with the text you want to display. The vast
majority of the time it will be the very method name that you have specified in the cref
attribute so the finished element will appear redundant:

<see cref="DefineContext">DefineContext</see>

But the content of the <see> element is directly transferred to the content of the <a>
element in HTML.:

DefineContext

Since the content of the <see> element is just text, you could specify one particular
signature of an overloaded method as the target of the link but still use a non-specific
text string.

<see cref="DefineContext(string,int)">DefineContext</see>

Visual Studio requires you be unambiguous in your references. If your method is
overloaded, then you must specify an argument signature, but by manipulating the
content of the <see> element you have the flexibility to render it in your documentation
however you wish.

Referencing Generic Types in <see> Elements

Maybe not today, maybe not tomorrow, but soon (with apologies to Casablanca) you will
eventually want to reference a method that takes a generic argument, perhaps an
argument like List<double>. If you put that inside a cref attribute Visual Studio will balk
when you build, indicating badly formed XML. The workaround for this is to substitute
curly braces for the angle brackets, as in:

<see cref="DefineContext(List{double},int)">DefineContext</see>

Accompanying this article is a SandcastleDemo solution (for Visual Studio 2010) that
illustrates all of the complexities of the <see> element discussed above. The solution
also include an SHFB project file. Once you build in Visual Studio then build in SHFB,
you can see how the doc-comments render on the finished webpage. If you do not have
Visual Studio 2010 and wish to compile the project, just import the two c# files into a
new project in Visual Studio 2008. But note that you do not need to build to see the
results of the demo; the project archive includes the intermediate XML file that results
from a Visual Studio build plus the finished HTML output from an SHFB build.

Displaying Sample Code

SHFB provides flexible and powerful support for displaying sample blocks of code, be
they in .NET languages or a variety of others. Code renders in a fixed-width font. The
area is shaded to set it off from your main text. It gets a title if you have specified it, and
a Copy button to make copying more convenient than having to manually mouse over a
region. Most significantly, Sandcastle recognizes and syntax-highlights code from more
than a dozen languages. The list of supported languages is available at the SHFB
documentation page; drill down to Custom Build Components » Code Block Component.

My SandcastleDemo project includes a class Language.cs that demonstrates just a
small portion of the code block support—each of the samples shown next is included so
you can see how they appear in the generated documentation.

To insert a block of code, place it inside a <code> element: the minimum required is just
the element name:

/// <code>

/// ChameleonRichTextBox crtb = new ChameleonRichTextBox();
/// crtb.DefineContext("MyContext", "C:\usr\tmp\stuff.xml");
/// crtb.EditorContextName = "MyContext";

/// </code>

Sandcastle defaults to C# but it is better practice to explicitly specify your language:

/// <code lang="C#">

/// ChameleonRichTextBox crtb = new ChameleonRichTextBox();
/// crtb.DefineContext("MyContext", "C:\usr\tmp\stuff.xml");
/// crtb.EditorContextName = "MyContext";

/// </code>

Other .NET languages are available, of course:

/// <code lang="VB">

/// Public Sub SomeMethod()
/// Dim x As Integer

/// For x =1 To 10

/17 Console.WriteLine(x)
/// Next x
/// End Sub

/// </code>

Other commonly used languages, such as XML may also be specified:

/// <code lang="xml" title="Example Macro Template">
/// <Keyword alias="SELECT-FULL" whiteSpace="preserve">
/// <stuff/>

http://www.ewoodruff.us/shfbdocs/
http://www.ewoodruff.us/shfbdocs/

/// </Keyword>
/// </code>

Note that this last example specifies a title. This appears at the top of the block flush left,
with a button to copy the text of the code block placed flush right. If you do not specify a
title, the language name is used instead.

The code block component further lets you include the contents of an external file as the
content of a <code> element via the source attribute. You can even grab just a portion
from a live, working code file to completely eliminate duplicating code in an example! All
you need to do this is to use the standard .NET #region markup notation. Here is an
example from a live XAML file—note the #region and #endregion tags:

<Grid>
<l-- #region XAML Snippet -->
<StackPanel Height="128" HorizontalAlignment="Left"
Margin="38,93,0,0" Name="stackPanell" VerticalAlignment="Top" Width="200">
<Label Content="Label" Height="28" Name="labell" />
<TextBlock Height="23" Name="textBlockl" Text="TextBlock" />
</StackPanel>
<l-- #endregion -->
</Grid>

In your doc-comments you specify the file name and region name along with providing a
title, identifying the language, and any other attributes you prefer. Again, this is included
in the demo project so you can try it and see it really works! Note that the path in the
source attribute is relative to the location of the SHFB project file, not the file containing
the doc-comments:

/// <code source="SandcastleDemo/UserControll.xaml"
/// region="XAML Snippet" lang="XAML" title="Live Code Example" />

In a <code> block, you may even specify a non-supported language—Sandcastle treats
the content just like a supported language except for the syntax highlighting. | commonly
use “text” as a pseudo-language label to designate blocks of not-quite-code that | want
in my documentation. Because SHFB performs syntax highlighting for any supported
languages, a side effect of this is that you may not use any additional HTML markup in
your block of code (for example, to italicize a word you want to emphasize). If the
language is not supported then you may use additional HTML markup in the code block.
(The Language.cs file in the demo project illustrates this for both a supported and an
unsupported language.)

Style Choices and Code Display Issues

Three languages get special treatment in Sandcastle: C#, Visual Basic, and C++. Each
of these appears in the language selector at the top of each page of your documentation
set (labeled, as a default, as the Code all button mentioned earlier). You can filter the
page to include any subset of these three languages using this dropdown button. This
applies to automatically generated code, such as for a class constructor, as well as for
your own code blocks. For the latter, the DHTML that supports this is driven by the
language you specify in the lang attribute of the <code> element. So you could turn off
displaying C# or Visual Basic or C++ but you cannot turn off displaying an XML block, if
you happen to have included one. SHFB also provides an option to ignore this filtering
for a specific block by adding a filter attribute with a value false.

Unfortunately (unlike MSDN) this language selection does not carry over from page to
page! That is apparently a lot more challenging to fix than it might appear (per this
thread). | believe it is also connected to this defect that includes, among other Firefox
issues, failure of the Code all button to render properly in Firefox with the latest
Sandcastle/SHFB release from June 2010. Because of this | am sticking with the prior
release for the time being.

The last couple paragraphs apply to Sandcastle’s vs2005 presentation style. That is the
style that you have seen on all the screen shots so far. But Sandcastle provides two
other presentation styles, called hana and prototype. (Do not try to read too much into
the choice of these style hames—this post by Ben Hall, for example, describes how
hana was simply an internal code name for the Sandcastle sub-project and this
Sandcastle blog entry talks about hana’s introduction.)

The following tabbed display shows the same page rendered in the three styles in as
close to a side-by-side display as this web page format allows.

e vs2005
° hana

e | prototype

,@ Al = Collap=e All » Code: All
= sandcastieDemo Namespace | Elj"dﬁge E;:" Ea: Ay
Language Class serc.ontre [vistial Basic
» See_References Class Members See : ack
SuperWidget Class Visual C++ =
= UserControll Class! [

Interaction logic for UserControll.xaml

» UserControll Membe DeserCantroll

» UserControll Constr
UserControll Method Mamespace: SandcastleDemo
= UserControll Propery | Assembly: SandcastleDemo (in SandcastleDemo.dll) Version:

= |UserControll Events 1.0.0.0 (1.0.0.0)

= Syntax

E C#
public class UserControll - UserControl,
IComponentConnector

Visual Basic (Declaration)

Public Class UserControll
Inherits UaerControl
Inplements IComponentConnector

Visual C++

public ref class UserControll : public UserControl,
IComponentConnector

(el
<] il | > i |[>|_

Figure 12 Three Styles of Sandcastle Output

http://shfb.codeplex.com/Thread/View.aspx?ThreadId=82529
http://sandcastlestyles.codeplex.com/workitem/11465
http://blog.benhall.me.uk/2007/07/sandcastle-what-you-need-to-know.html
http://blogs.msdn.com/b/sandcastle/archive/2007/06/17/introducing-a-new-document-model-design-code-named-vsorcas.aspx
http://www.simple-talk.com/dotnet/.net-tools/taming-sandcastle-a-.net-programmers-guide-to-documenting-your-code/#tab1
http://www.simple-talk.com/dotnet/.net-tools/taming-sandcastle-a-.net-programmers-guide-to-documenting-your-code/#tab2
http://www.simple-talk.com/dotnet/.net-tools/taming-sandcastle-a-.net-programmers-guide-to-documenting-your-code/#tab3

Notice the language selector. It appears at the top of each page, but in different
positions (I have highlighted it on each page). In the vs2005 style, you have
checkboxes in the dropdown, allowing you to select any combination of the three key
languages. In both hana and prototype styles, however, you have radio buttons: you
may only select one language at a time. That is a necessary design constraint because
those styles show the 3 languages in separate tabs so you could not see two at the
same time (just like the tabs in Figure 12).

The hana and prototype styles give you other benefits: they put class members in tabs
plus they let you interactively filter members based on properties (public, protected,
instance, static, and so forth). But these two styles also have a defect: unlike the vs2005
style where your own code blocks are filtered by the language selector, these styles do
not apply the language filter to your code blocks. So the only thing the language selector
affects is automatically generated code (such as class constructors).

Using Favicons in Your Generated Web Site

A favicon is a logo displayed in the favorites menu, address bar, and page tabs adjacent
to your page name. It is just one more element that makes your web pages more
polished. Sandcastle does not provide a property hook or other mechanism to add a
favicon to your generated web pages (see this SHFB discussion thread) so | added a
post-processing step to my build file to embed a favicon on the generated web pages.
MSDN’s How to Add a Shortcut Icon to a Web Page provides all the details of how to do
this yourself, but the gist of it is that you need to add a line like this to the <head>
element of your web page:

<link rel="SHORTCUT ICON" href="http://www.mydomain.com/myicon.ico"/>

There are potential pitfalls with specifying the favicon, but | have tested this flavor in
both Internet Explorer 8 and Firefox 3.6. In my ant build file | embed this just before the
closing tag of the <head> element for all the generated web pages, which includes the
master page (Index.html) and all the child pages (html/*.htm). Since the ant file is itself
an XML file, the opening angle brackets are encoded as XML entities (<). Here is the
fragment that does that:

<echo>Activating favicon for documentation set.</echo>
<replaceregexp match="'&1t;/head>"'
replace="&1t;1link
rel="SHORTCUT ICON"
href="/icon/CleanCode_C_csharp_32x32.ico"/>&1t;/head>"'>
<fileset dir="¢${mirror.api}/csharp” includes="Index.html,html/*.htm"/>
</replaceregexp>

Rendering Issue with Unresolved Links

With a <see cref="class.property"/> doc-comment where the class.property resolves to a valid
reference but there is no documentation to link to, the text renders as property() rather
than the correct property. That is, there are extraneous trailing parentheses almost as if
Sandcastle got confused and thought this was a method. If the reference resolves to a
valid reference and there is also documentation to link to, then Sandcastle correctly
omits the parentheses and attaches a hyperlink.

As a concrete example | have a doc-comment containing this line:

http://en.wikipedia.org/wiki/Favicon
http://shfb.codeplex.com/Thread/View.aspx?ThreadId=85659
http://msdn.microsoft.com/en-us/library/ms537656.aspx

/// The <see cref="SyntaxHighlightingTextBox.EnableHighlighting"/> property. . .

The class containing that doc-comment inherits from SyntaxHighlightingTextBox so it
is a valid reference. However, the code for SyntaxHighlightingTextBox comes from an
external library whose DLL is not included in the documentation source set. When
Sandcastle cannot resolve the link target, it does not balk but just emboldens the text
and does not attach a link. The final generated HTML for the above line, however,
renders with extraneous parentheses:

The EnableHighlighting() property. . .

Though | did get a general idea on how to work around this issue in this SHFB forum
thread, | have not pursued the fix so you will find some of these incongruous constructs
in my released documentation.

File Naming Conventions

Say you have a fully qualified class name CleanCode.Data.OdbcDsnlinfo.cs. Particularly
while you get up to speed with documentation generation you may often wish to
examine the generated documentation for a given file. NDoc makes this trivial; the
above source file yields this set of documentation files:

e CleanCode.Data.OdbcDsniInfo.AllDsnElements.html
¢ CleanCode.Data.OdbcDsnInfo.AllDsnNames.html

e CleanCode.Data.OdbcDsniInfo.GetDriver.html

e CleanCode.Data.OdbcDsnInfo.html

o CleanCode.Data.OdbcDsnlInfo.IsMySql.html

e CleanCode.Data.OdbcDsnInfo.lsOracle.html

e CleanCode.Data.OdbcDsnlInfo.lsSqlServer.html

e CleanCode.Data.OdbcDsnlInfo.lsWindowsAuthentication.html
e CleanCode.Data.OdbcDsnInfo.OdbcTarget.html

¢ CleanCode.Data.OdbcDsninfoMembers.html

e CleanCode.Data.OdbcDsninfoMethods.html

¢ CleanCode.Data.OdbcDsnInfoProperties.html

NDoc creates the class-level file (highlighted in red) as well as other aggregate pages
(highlighted in blue) as needed, plus a page for each individual member. The default
SHFB configuration, however, yields a set of files something like 36¢c0419d-28d0-d7b5-
94ee-89cab5cd14b2.htm, which is a bit harder for us mere humans to readily map back
to the source! Fortunately, SHFB provides the NamingMethod property to let you tailor
this behavior (see this SHFB forum thread). Switch from the default value of Guid to the
more useful MemberName and you get this set of files:

AllMembers T CleanCode Data_OdbcDsninfo.htm
M_CleanCode_Data_OdbcDsniInfo_GetDriver.htm
M_CleanCode_Data_OdbcDsnInfo_IsMySql.htm

M_CleanCode Data_OdbcDsniInfo_IsOracle.htm
M_CleanCode_Data_OdbcDsniInfo_IsSqglServer.htm
M_CleanCode Data OdbcDsniInfo IsWindowsAuthentication.htm
M_CleanCode_Data_OdbcDsnInfo_OdbcTarget.htm

http://shfb.codeplex.com/Thread/View.aspx?ThreadId=79078
http://shfb.codeplex.com/Thread/View.aspx?ThreadId=79078
http://shfb.codeplex.com/Thread/View.aspx?ThreadId=73272

Methods T CleanCode Data OdbcDsnlInfo.htm
P_CleanCode Data_OdbcDsniInfo_AlIDsnElements.htm
P_CleanCode Data_OdbcDsnInfo AlIDsnNames.htm
Properties_T_CleanCode_Data_OdbcDsninfo.htm

T _CleanCode Data_ OdbcDsninfo.htm

The colors map between the Sandcastle files and NDoc files. There are a couple subtle
but important differences to note here. NDoc uses a format of
namespace.class.member.html while Sandcastle uses MemberTypePrefix_-
namespace_class_member.htm. You read about member type prefixes earlier; they are the
same set of codes. Thus, T (short for Type) represents the class; P represents property;
M represents method. So just from the file names, you can tell whether the documented
member is a property or method or event or class. This can come in handy if, for
example, you want to search for something in all files documenting methods, or perhaps
you want to add a post-processing step to add something to all files documenting
properties.

Specifying Debug or Release Configuration

A common error (that | still make on occasion) is to forget to set the configuration in
SHFB to match the configuration in Visual Studio. Just as Visual Studio gives you a
dropdown to select debug or release builds, SHFB provides the very same feature. If
your SHFB selection does not match your Visual Studio selection, it will abort the
Sandcastle build quite early on (unless you have some older, probably obsolete build in
the other configuration still present!). The dropdown in SHFB appears in the top toolbar,
highlighted in Figure 13.

- —_— — -
ﬁ_']_ SandcastleDemo® - Sandcastle Help File Builder s alEle
Fle Documentation Window Help
NE g [543 'Debug - |M:.CF’U - HY K 4+ FAQ @
" Project Properties | w x | Project Explorer B X
o = 1 sandcastieDemo
CE l |— || =3 Documentation Sources
CopCommentsFoup False . ~[@l SandcastleDemo.csproj
Framework Version 35 =l References
HelpFile Fomat Website il
KesplogFile True i
PluginCorfigurations MNene) e
| UserDefinedProperties {(Mone) B
| B Comments
MNamegpace Summares (Haone)
Project Summary
E Help Fle
Content Placement £AboveMamespaces
CopyrightHref B4 | J
Copyrght Text B Fle
Feedback EMalAddress ckideSibE Fake
m.ari{aEMhhkTm H SourceFile Sandcastle Demo\SandcastleDemo . cs|
! HeaderText
| HelpTitle A Sandcastle Documented Cla: m _]
|| HimiHelpMName Documentation
InderitHtml Falsw
Language English (Uniied States)
Maming Method Memberiame
Preliminary Falze i
| NamingMethod ' Configuration
Specity the naming method to use for the help topic filenames The configuration to use for a solution or project
documentation source. I blank, the configuration from the..
| Ready || L
e = = e

Figure 13 Selecting Configuration in SHFB
You can set a global setting (top) or a per-project setting (bottom-right) from the
GUL.

There are several other ways to specify configuration, though. The dropdown in the top
toolbar is a global (i.e. solution) setting. You could override this on a per-project basis
though, by selecting a project in the project explorer (top right) then setting the
configuration property in the property pane (bottom right).

If you run the Sandcastle build from the command line, it defaults to the debug
configuration. You may change that, or just make it explicit, specifying either debug or
release for the value of the configuration parameter:

msbuild -p:Configuration=nnnn .

Note that the per-project settings will override the command-line just as they did in the
GUL.

Finally, you can set the configuration by editing the SHFB configuration file itself. The
value there will only be used if you build from the command line and only if Configuration
and Platform are undefined. (See this SHFB forum thread for a recap of this section.)

Finding What You Missed

A generated documentation set in web page format can easily run into the hundreds of
pages or more. It is important, therefore, to verify that you have documented everything
that needs documenting. There are a few techniques you can use to do this. Start with
the Error List panel when you build your projects in Visual Studio. Any missing XML doc-
comments are reported as warnings. But make sure you do a Rebuild Solution to
check all your projects! As you likely know, any projects without errors (i.e. just warnings
and/or informational messages) do not rebuild automatically if you just use Build
Solution. It is easy to overlook this step so, depending on what you last built, you might
miss some warnings.

SHFB reports rather verbose output during its build process including messages about
missing doc-comments. Unfortunately, because of the sheer amount of messages it is
difficult to identify the important messages. Your last resort, then, is Sandcastle’s output
itself. As shown in Figure 14, the generated documentation indicates when items are
missing. What Sandcastle reports here is configurable in SHFB. Under the Show
Missing Tags category you can individually enable or disable displaying of missing
include targets, namespaces, params, remarks, returns, summaries, typeparams, or
values. By default, missing remarks and missing include targets are disabled; the
remainder are enabled.

") A Sandcastle Documented Class Library - Table of Content - Mozilla Firefox |L”E|@
G'iliél BCollap=e All | » Language Filter; C=
E|ZandcastleCemo Namespad 2 Sandcastle Documented Class Library

* Language Class

= Sege_References Class
H SuperWidget Class

H UserControll Class

SandcastleDemo Namespace

[Missing <summary> documentation for "N:SandcastleDemo™]

= Types
All Types C is:--szvlg |
HName Description

“i3 Lznguzcs Checks cut seme lznguzge filtering
features of Sandcastle.

i 4 Ses Referencas Hlustrates referances in Sandcastle
doc-comments,

\7-3 Supsriwiccst Soms msthods and propertiss uszc by
See_Refzrences.cs.

e [rcontral} [ntaraction loglc for UserCantreli.xam

Figure 14 Example of a Missing Doc-Comment Element

Now you are back at finding the one or five or 17 reports of missing tags spanning the
hundreds of pages of Sandcastle output. Rather than navigating through all the pages in

http://shfb.codeplex.com/Thread/View.aspx?ThreadId=78980

your web browser(!) use your favorite regular expression search tool to find all
occurrences in all the documentation pages with this regular expression.

\[Missing.*[Dd]ocumentation for .*?\]

What you will get is a set of very long lines (because the generated HTML elements
typically have few line breaks) plus the content will include HTML encoding of angle
brackets and quotation marks. With just a bit of cleanup, though, you can remove the
detritus to leave just the useful parts:

[Missing <returns> documentation

for "M:SandcastleDemo.SuperWidget.GetStandardDeviation"]
[Missing <returns> documentation

for "M:SandcastleDemo.SuperWidget.GetPhrase"]
[Missing <summary> documentation

for "N:SandcastleDemo"]

Here is a fragment from my ant build script that does the whole process: finds all
relevant lines in all generated HTML files then isolates the key information and strips the
HTML encoding—translate this to your favorite text manipulation tool:

<target name="csharp.doc.checkMissing">

<concat>
<fileset dir="${mirror.api}/csharp/html" includes="*.htm"/>
<l-- find the relevant lines-->
<filterchain»>

<linecontainsregexp>
<regexp pattern="\[Missing.*[Dd]ocumentation for .*?\]"/>
</linecontainsregexp>
<tokenfilter>
<l-- isolate the key message -->
<replaceregex pattern="".*\[(Missing.*Documentation for .*?)\].*"
replace="\1" flags="i"/>
<!—strip the HTML encoding-->
<replaceregex pattern="&lt;(.*?)&gt;"
replace="8&1t;\1>"/>
<replaceregex pattern="&quot;(.*?)&quot;"
replace=""\1""/>
</tokenfilter>
</filterchain>
</concat>
</target>

The above discussion describes how to find the list of things you missed that Sandcastle
noticed and complained about. There is one more category of errors: things you missed
that Sandcastle noticed and did not complain about. There is only one item | have
identified in this category: invalid internal link targets. These emanate from <see>
elements using the cref attribute to, in theory, point to some other spot in your
documentation. When Sandcastle does not resolve the link, it wraps the link text in a
 element with a class of nolink, as in

Initializes a new instance of the xyz class.

These do not show up as obvious errors in your documentation: they simply appear
emboldened. In SHFB’s verbose output log, these also appear with the phrase Invalid
reference link target.

Documenting Namespaces

The report of missing namespace documentation displayed in Figure 14 is one of the
most common, and often the last error you need to clean up, the reason being that
Visual Studio’s error checking does not look for it. Only when you review Sandcastle
output will you see the error showing up. (This is the one item | know which Sandcastle
checks but Visual Studio does not; but there may be others!)

There are two ways to add namespace documentation: in your source tree as separate
files, or via property assignment in the SHFB GUI.

To include namespace comments in your source tree, create a class called
NamespaceDoc in each namespace. Decorate each of these classes with a
CompilerGenerated attribute and omit the public keyword to suppress the
NamespaceDoc class itself from appearing in the finished documentation set. (On the
SHFB documentation page then drill down to Project Properties Window » Comments
Category Properties » Using NamespaceDoc Classes for details.)

To add namespace comments with the GUI, select the value field for the
NamespaceSummaries property in the Comments category and an ellipsis appears.
Click on the ellipsis to open the Namespace Summaries panel. After it analyzes your
source files for a minute or so, SHFB lists all your namespaces, each preceded with a
checkmark. (You can uncheck a namespace if you want to exclude it from the
Sandcastle build.) Select a namespace in the list at the top left then in the bottom pane
enter the summary text for that namespace. Do this for each namespace you are
including in your documentation set. The text you enter may be pure text or it may
include HTML markup. (On the SHFB documentation page then drill down to Project
Properties Window » Comments Category Properties for details.)

Conclusion

Sandcastle, supplemented by the power of Visual Studio, is a formidable engine for
generating documentation for your code. With it, your documentation can live where it is
best, right with your code. When you update your code in order to delete a parameter,
change a method name, or refactor some class, you are forced to update the
documentation at the same time—or suffer a slew of Visual Studio warning messages.
The main shortcoming of Sandcastle, such as the poor user-interface, was removed by
the aptly named Sandcastle Help File Builder, thereby bringing professional quality
documentation within the reach of the average developer. Even so, there are a variety of
pitfalls and hurdles inherent in the process. This article provides a good resource for
overcoming a good number of them but I'm sure that my limited experience with
Sandcastle has not been enough to uncover them all!

The demo files are available as a zipped file from the speech-bubble at the
head of the original article on Simple-Talk. Likewise, there is an ePub
booklet version of this, which can be read on the iphone/Android/iPad as well
as any PC using any ePub-compatible reader such as iBooks or Adobe
Digital Edition

http://www.ewoodruff.us/shfbdocs/
http://www.ewoodruff.us/shfbdocs/

	Contents
	XML Documentation Comments: First Look
	Doc-Comment Elements
	Automate Your Doc-Comment Creation
	Level 1: Word-level Assist: Intellisense
	Level 2: Foundation-laying Assist: Smart Comment Editing

	The Problem of Documentation Generation
	Sandcastle Help File Builder
	Running Sandcastle Help File Builder
	Sandcastle Help File Builder Configuration: First Look
	Rules for Embedding HTML
	Sandcastle for NDoc Users
	Sandcastle Considerations
	Browser Flexibility
	Storage Requirements
	Performance and Inheritance
	Issues Deploying on Linux/Unix
	Disambiguating and Resolving <see> References
	Verbosity of <see> Elements
	Referencing Generic Types in <see> Elements
	Displaying Sample Code
	Style Choices and Code Display Issues
	Using Favicons in Your Generated Web Site
	Rendering Issue with Unresolved Links
	File Naming Conventions
	Specifying Debug or Release Configuration
	Finding What You Missed
	Documenting Namespaces

	Conclusion

